
a r t i c l e s

nature medicine  VOLUME 17 | NUMBER 11 | NOVEMBER 2011	 1473

Bone is continuously renewed by a process called bone remodeling, in 
which the resorption phase is followed by the reformation phase1–4. 
Each of these phases and also the transition between them requires 
a fine regulation by humoral factors or molecules mediating the 
communication among bone cells. Typically these factors are either 
secreted by the bone cells, expressed on the membrane of the bone 
cells or released from the bone matrix1,2,5–7. For example, transform-
ing growth factor-β (TGF-β) and IGF released during bone resorption 
are known to stimulate bone formation2,5, thus being called ‘classical’ 
coupling factors. Despite a wealth of in vitro data on other candidate 
molecules that are crucial for osteoclast-osteoblast communication6, 
in vivo evidence has been lacking.

Axon-guidance molecules are widely expressed outside the nerv-
ous system, where they control cell migration, the immune response,  
tissue development and angiogenesis8–13. Recent studies have sug-
gested that axon-guidance molecules, such as the semaphorins and 
ephrins, are involved in the cell-cell communication that occurs 
between osteoclasts and osteoblasts14–18. Here we provide genetic 
evidence for the role of Sema4D derived from osteoclasts in the  
regulation of bone formation through its receptor Plexin-B1,  
which is expressed by osteoblasts.

RESULTS
Osteoclast-derived Sema4D inhibits bone formation
To gain insight into the involvement of axon guidance molecules in 
bone remodeling, we performed a comprehensive expression analysis 

of the semaphorin, ephrin, netrin and slit gene families in osteo-
clasts and osteoblasts in mice. We observed high expression of Sema4d 
in osteoclasts, but not in osteoblasts (Fig. 1a and Supplementary 
Fig. 1a). Sema4d expression increased during receptor activator 
of nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis.  
The Sema4D induction was markedly reduced in nuclear factor of 
activated T cells c1–knockout cells (Supplementary Fig. 1b).

The elevated expression of Sema4D in the osteoclast lineage led us 
to analyze its function in the skeletal system using Sema4d−/− mice. 
Bone volume and trabecular thickness were significantly greater 
in Sema4d−/− mice as compared to wild-type mice (Fig. 1b). The 
three-point bending test showed that bone strength was greater in 
the Sema4d−/− mice (Fig. 1b). Bone morphometric analyses revealed 
that both the osteoblast surface and bone formation rate markedly 
increased (Fig. 1c, Supplementary Fig. 1c and Supplementary  
Table 1), whereas the parameters for osteoclastic bone resorption 
were normal in the Sema4d−/− mice (Fig. 1d), suggesting an osteo-
sclerotic phenotype. In vitro osteoclastogenesis in Sema4d−/− cells was 
also normal (Supplementary Fig. 1d,e). These results suggest that 
the high-bone-mass phenotype in the Sema4d−/− mice was caused 
by an increase in bone formation activity by osteoblasts, even though 
Sema4D is expressed exclusively by osteoclasts.

We performed an adoptive transfer of bone marrow cells including 
osteoclast precursor cells. Wild-type mice engrafted with Sema4D-
deficient bone marrow cells had a high bone mass, whereas Sema4d−/− 
mice engrafted with wild-type bone marrow cells had a normal bone 
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Suppression of bone formation by osteoclastic expression 
of semaphorin 4D
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Most of the currently available drugs for osteoporosis inhibit osteoclastic bone resorption; only a few drugs promote osteoblastic 
bone formation. It is thus becoming increasingly necessary to identify the factors that regulate bone formation. We found that 
osteoclasts express semaphorin 4D (Sema4D), previously shown to be an axon guidance molecule, which potently inhibits 
bone formation. The binding of Sema4D to its receptor Plexin-B1 on osteoblasts resulted in the activation of the small GTPase 
RhoA, which inhibits bone formation by suppressing insulin-like growth factor-1 (IGF-1) signaling and by modulating osteoblast 
motility. Sema4d−/− mice, Plxnb1−/− mice and mice expressing a dominant-negative RhoA specifically in osteoblasts showed an 
osteosclerotic phenotype due to augmented bone formation. Notably, Sema4D-specific antibody treatment markedly prevented 
bone loss in a model of postmenopausal osteoporosis. Thus, Sema4D has emerged as a new therapeutic target for the discovery 
and development of bone-increasing drugs.
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Figure 1  Inhibition of bone formation by osteoclast-derived Sema4D. (a) Genome-wide screening of mRNA for the semaphorin family proteins during 
differentiation of osteoclasts and osteoblasts. (b) Microcomputed tomography (µCT) of the proximal femur of the wild-type (WT) and Sema4d−/− mice 
(top left, axial view of the metaphyseal region; bottom left, longitudinal view). Bone volume and trabecular thickness were determined by µCT analysis 
(middle). Maximum load to failure and energy resorption were determined by the three-point bending test (right). (c) Bone formation, as observed by 
calcein double labeling at an interval of 4 d (top) and the parameters for osteoblastic bone formation, as determined by bone morphometric analysis 
(bottom). (d) The parameters for osteoclastic bone resorption, as determined by bone morphometric analysis. (e) Bone volume after adoptive transfer 
of wild-type or Sema4d−/− bone marrow cells (BMs) to wild-type (left) and Sema4d−/− (right) mice. (f) Effect of Fc-sema4D on bone nodule formation. 
Left, Alizarin red staining; middle, amount of alizarin red; right, effect of Fc-sema4D on ALP activity. (g) Effect of Fc-sema4D on the mRNA expression 
of Bglap and Col1a1. (h) The amount of Sema4D in the osteoclast supernatant and the cell lysate during osteoclast differentiation. The amount of 
Sema4D was analyzed using bone-resorbing osteoclasts 96 h after RANKL stimulation. (i) Effect of osteoclast culture supernatant or coculture with 
osteoclasts on bone nodule formation. Left, Alizarin red staining; right, amount of the alizarin red. (j) Effect of antibody to Sema4D (anti-Sema4D) on 
bone formation in wild-type osteoblasts cocultured with wild-type or Sema4d−/− osteoclasts. Left, Alizarin red staining; right, amount of alizarin red.  
*P < 0.05; **P < 0.01; ***P < 0.005; NS, not significant; ND, not detected. Error bars show s.e.m. 
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mass (Fig. 1e), showing that the bone phenotype in the Sema4d−/− 
mice resulted from a defect in hematopoietic lineage cells including 
osteoclasts. Consistent with this, there was no obvious increase in the 
bone nodule formation of Sema4d−/− calvarial cells in the absence of 
osteoclasts (Supplementary Fig. 1f–h). These results suggest that the 
Sema4D expressed by osteoclasts inhibits osteoblastic bone formation 
and is a mediator of osteoclast-osteoblast communication.

To observe the inhibitory effect of Sema4D on osteoblasts, we 
added soluble Sema4D fused with the IgG1 Fc region (Fc-sema4D)19 
to the calvarial cells cultured under osteogenic conditions. Addition of 
Fc-sema4D suppressed bone nodule formation, alkaline phosphatase 
(ALP) activity and the expression of osteoblastic marker genes such as 
osteocalcin (Bglap) and type I collagen (Col1a1) in a dose-dependent 
manner (Fig. 1f,g). There was no difference in the number of mesen
chymal stem cells and osteoblast precursor cells in bone marrow 
between wild-type and Sema4d−/− mice (Supplementary Fig. 2).

Although Sema4D is a transmembrane protein, it is proteolytically 
cleaved into a soluble form upon cellular activation9,20. We did detect 
soluble Sema4D in the osteoclast culture supernatant, but only a small 
portion was released as a soluble form, regardless of the osteoclast matu-
ration stage (Fig. 1h), suggesting that membrane-bound Sema4D has a 
larger role in suppression of bone formation. To examine the contribution 

of osteoclast-derived Sema4D to the regulation of bone formation, we 
cultured calvarial cells in the presence of osteoclast culture supernatant or 
cultured osteoclasts. The addition of culture supernatant of the wild-type 
osteoclasts to calvarial cells or coculturing calvarial cells with wild-type 
osteoclasts did not influence bone nodule formation, ALP activity or the 
expression of osteoblastic marker genes; in contrast, these processes were 
markedly enhanced by either the culture supernatant of the Sema4d−/− 
osteoclasts or the coculture with the Sema4d−/− osteoclasts (Fig. 1i and 
Supplementary Fig. 3a–d). Consistent with this, bone formation in the 
presence of wild-type osteoclasts was increased by Sema4D-specific 
antibody in a dose-dependent manner (Fig. 1j and Supplementary 
Fig. 3e–g). We concluded that osteoclasts generate factors promoting 
bone formation1,5, which is obvious only in the absence of Sema4D, but 
osteoclast-derived Sema4D has a dominant effect that antagonizes this 
bone-forming activity. Collectively, the evidence shows that osteoclasts 
suppress bone formation through the expression of Sema4D.

Plexin-B1 recognizes Sema4D and inhibits bone formation
To identify the Sema4D receptors expressed by osteoblasts, we analyzed 
the mRNA expression of B-type plexins and CD72, which are known to 
be Sema4D receptors preferentially expressed in nonlymphoid and lym-
phoid cells, respectively9,21. Plexin-B1 expression was markedly induced 
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Figure 2  Plexin-B1 functions as a receptor for  
Sema4D in osteoblasts. (a) Expression of mRNAs  
for B-type plexins and CD72 during osteoblast  
differentiation. ND, not detected. (b) Association of  
Plexin-B1 with Fc-sema4D in osteoblasts cultured in  
osteogenic medium for 3 d. (c) Tyrosine phosphorylation  
of ErbB2 and Met by Fc-sema4D stimulation after 3 d of culture in the osteogenic medium.  
(d) Tyrosine phosphorylation of Plexin-B1 after Fc-sema4D stimulation in the presence or absence  
of 30 µM of an ErbB2 inhibitor (ErbB2 inhibitor II). (e) Microcomputed tomography of the femur of wild-type (WT) and Plxnb1−/− mice (see Fig. 1b 
legend for the details). (f) Bone formation, as observed by calcein double labeling and the parameters for osteoblastic bone formation determined. 
(g) The parameters for osteoclastic bone resorption were determined by bone morphometric analysis. (h) Effect of Fc-sema4D on bone formation in 
Plxnb1−/− osteoblasts. Left, bone nodule formation; middle, amount of alizarin red; right, ALP activity. (i) Effects of the antibody to Plexin-B1  
(anti–Plexin-B1) on bone formation in Fc-sema4D–treated osteoblasts. Left, bone nodule formation; middle, the amount of alizarin red; right,  
ALP activity. *P < 0.05; **P < 0.01; ***P < 0.005; NS, not significant; ND, not detected. Error bars show s.e.m.
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during osteoblast differentiation (Fig. 2a), but not during osteoclast  
differentiation (data not shown). The induction of Plexin-B1 in osteo
blasts was much higher than that of Plexin-B2, and Plexin-B3 and CD72 
were almost undetectable (Fig. 2a). A pull-down experiment using Fc-
sema4D indicated that Sema4D physically interacted with Plexin-B1 
(Fig. 2b). Plexin-B1 forms a receptor complex with either erythroblas-
tic leukemia viral oncogene homolog 2 (ErbB2) or hepatocyte growth 
factor receptor (Met), depending on the cell type22. Binding of Sema4D 
to Plexin-B1 results in the phosphorylation of the kinase (ErbB2 or Met) 
and Plexin-B1 (ref. 23). In osteoblasts, expression of ErbB2 was higher 
than that of Met (Supplementary Fig. 4a), and Sema4D stimulation 
induced the phosphorylation of ErbB2, but not Met (Fig. 2c). Sema4D 
induced the phosphorylation of Plexin-B1, and this phosphorylation was 
substantially lowered in the presence of the ErbB2 inhibitor (Fig. 2d),  
suggesting that Plexin-B1 functions as a receptor for Sema4D and ErbB2 
serves as an associating kinase in osteoblasts.

Similar to Sema4d−/− mice, Plxnb1−/− mice had a high bone mass 
due to an increase in osteoblastic bone formation, and there was no 
obvious abnormality in osteoclastic bone resorption (Fig. 2e–g and 

Supplementary Fig. 4b,c). Fc-sema4D at 10 µg ml−1 did not inhibit 
bone formation in Plxnb1−/− osteoblasts but did cause strong inhibi-
tion in wild-type osteoblasts (Fig. 2h and Supplementary Fig. 4d), 
and the Plexin-B1–specific antibody effectively suppressed the inhibi-
tory effect of Fc-sema4D on bone formation in wild-type cells (Fig. 2i 
and Supplementary Fig. 4e). In addition, similar to the Sema4d−/− 
osteoclasts, wild-type osteoclasts promoted bone formation in the 
Plxnb1−/− osteoblasts (Supplementary Fig. 4f–h). These results indi-
cate that Plexin-B1 is mainly responsible for the osteoblast recognition 
of Sema4D. Plxnb1−/−; Sema4d−/− mice, however, had a higher bone 
mass than did Plxnb1−/− mice (Supplementary Fig. 5), and a high con-
centration of Fc-sema4D slightly inhibited bone formation in Plxnb1−/− 
cells (Fig. 2h and Supplementary Fig. 4d), suggesting that the effect of 
Sema4D is partly mediated by other receptors, such as Plexin-B2.

RhoA mediates Sema4D-Plexin-B1 signaling in osteoblasts
The semaphorin-plexin system regulates cell morphology and migra-
tion by modulation of actin cytoskeletal rearrangement, primarily via 
Rho family small GTPases23. The amount of GTP-bound, activated form 
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of RhoA in Sema4D-treated osteoblasts was notably lower in Plxnb1−/− 
cells as compared to wild type cells, whereas the level of GTP-bound 
Rac1 was not affected after Fc-sema4D stimulation (Fig. 3a). In addi-
tion, Sema4D-induced RhoA activation was reduced in the presence of 
an ErbB2 inhibitor (Fig. 3b). Adenoviral introduction of constitutively 
active RhoA (RhoA-V14) suppressed bone nodule formation in cal-
varial cells, whereas dominant-negative RhoA (RhoA-N19) promoted it 
(Supplementary Fig. 6a–c), suggesting that RhoA selectively mediates 
the inhibitory effect of Sema4D–Plexin-B1 on bone formation.

Plexin-B1 has two small GTPase regulatory domains, a GTPase-
activating protein (GAP) domain and a PDZ-binding domain that 
binds Rho guanine nucleotide exchange factor (GEF)24–27. We gene
rated two Plexin-B1 mutants: Plexin-B1-∆PDZ, which is unable to 
activate RhoA27, and Plexin-B1-RA, which does not elicit the GTPase 
activity of R-Ras24 (Fig. 3c). We stimulated Plxnb1−/− calvarial 
cells overexpressing these mutants with Fc-sema4D and examined 
the effect on osteoblast differentiation. The inhibitory effect of  
Fc-sema4D on the mRNA expression of Alpl (encoding ALP), Bglap 
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V14) or dominant-negative RhoA (RhoA-N19)  
on IGF-1–induced phosphorylation of Akt and 
Erk. MOI, multiplicity of infection. (d) Effect 
of RhoA-V14 or RhoA-N19 on IGF-1–induced 
phosphorylation of IRS-1. (e) Effect of the  
ROCK inhibitors Y-27632 and RKI on IGF-1– 
induced phosphorylation of Akt and Erk.  
(f) Effect of ROCK inhibitors on IGF-1– 
induced phosphorylation of IRS-1. (g) Effect of  
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and Col1a1 in Plxnb1−/− cells was recovered by the overexpression 
of Plexin-B1-RA as well as wild-type Plexin-B1, but not by Plexin-
B1-∆PDZ (Fig. 3d), concomitantly with the restoration of RhoA 
activity (Fig. 3e). Plexin-B1 is known to bind two RhoGEFs, PDZ-
RhoGEF (Arhgef11) and LARG (Arhgef12), through the PDZ-binding 
domain25–27. Osteoblasts expressed these RhoGEFs (Supplementary 
Fig. 6d), which interacted with Plexin-B1 (Fig. 3f), suggesting that 
these RhoGEFs are involved in the RhoA activation by Sema4D. RhoA 
activates various downstream effector molecules, including Rho- 
associated protein kinase (ROCK), whose inhibition, in turn,  
suppressed the inhibitory effect of Fc-sema4D on bone formation 
(Fig. 3g,h). These results suggest that the RhoA-ROCK pathway 
mediates the inhibition of bone formation by Sema4D.

We generated mice expressing dominant-negative RhoA specifi-
cally in osteoblasts (RhoA DNOB mice) by crossing CAT-RhoA DN 

transgenic mice28 with α1(I)-Cre transgenic mice29. RhoA DNOB 
mice had a high bone mass due to enhanced osteoblastic bone for-
mation, which recapitulates the bone phenotype of the Sema4d−/− and 
Plxnb1−/− mice (Fig. 4a–c and Supplementary Fig. 6e,f). Fc-sema4D 
did not inhibit bone formation in calvarial cells derived from RhoA 
DNOB mice (Fig. 4d,e), indicating that RhoA regulates bone forma-
tion in vivo and may be a crucial mediator of bone mass modulation 
by Sema4D–Plexin-B1 signaling.

Sema4D controls osteoblast differentiation and migration via RhoA
What are the mechanisms by which Sema4D inhibits bone forma-
tion in osteoblasts? The RhoA-ROCK pathway mediates the phos-
phorylation of IRS-1, which is involved in IGF-1 signaling during 
embryogenesis30. In calvarial cells, Sema4D stimulation reduced the 
tyrosine phosphorylation of IRS-1 at the tyrosine residue required 
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Figure 6  The bone-increasing effect of Sema4D–Plexin-B1 blockade. (a–c) The prophylactic effect of anti-Sema4D on ovariectomy (OVX)-induced bone 
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for Akt and mitogen-activated protein kinase activation (Fig. 5a). 
Fc-sema4D reduced phosphorylation of Akt and extracellular signal-
regulated kinase (Erk) in a dose-dependent manner, but not of p38 
or JNK (Fig. 5b). The adenoviral introduction of RhoA-V14 reduced 
the IGF-1-induced phosphorylation of Akt and Erk, whereas either 
overexpression of RhoA-N19 or ROCK inhibitors markedly increased 
the phosphorylation of Akt and Erk as well as the tyrosine residue of 
IRS-1 (Fig. 5c–f). These results indicate that Sema4D-induced RhoA 
activation suppresses osteoblast differentiation at least in part through 
an attenuation of IGF-1 signaling.

Binding of Sema4D to the Plexin-B1–ErbB2 receptor complex 
is known to stimulate cell motility through RhoA activation22. In 
osteoblastic cells, Sema4D stimulation decreased the expression of 
cadherin-11 at the cell-cell contact region (Fig. 5g,h), suggesting that 
Sema4D stimulates cell motility through an impairment of cell-cell 
adhesion, which in turn results in the reduction in bone-forming 
activity. To test this hypothesis, we examined the effect of Sema4D on 
osteoblast motility. A Boyden chamber assay showed that Fc-sema4D 
induced an acceleration of spontaneous migration of osteoblasts, 
which was inhibited by a ROCK inhibitor (Fig. 5i), suggesting that 
Sema4D-induced RhoA activation promotes osteoblast motility.

In bone tissue, the osteoblast surface lies at certain distance from 
the osteoclast surface, and there is usually an intervening quiescent 
surface in between (Fig. 5j). It remains unclear how the quiescent 
surface is maintained, but it is possible that osteoclasts produce 
a molecule(s) that stimulates osteoblast motility and guides the 
osteoblasts to a proper site. In Sema4d−/− mice, as well as Plxnb1−/− 
and RhoA DNOB mice, there were few quiescent surfaces, and we 
observed a cluster of osteoblasts in close proximity to bone-resorbing  
osteoclasts (Fig. 5j). Thus, osteoclast-derived Sema4D is required 
for the proper localization of osteoblasts and the maintenance of a 
quiescent surface.

Together, these data suggest that osteoclasts are involved in the spa-
tial regulation of bone remodeling through Sema4D, which inhibits 
osteoblast differentiation in the proximity of osteoclasts and repels 
osteoblasts by increasing their motility.

Therapeutic effect of an antibody to Sema4D on bone loss
To test whether inhibition of Sema4D would be a useful approach to 
the treatment of osteoporosis, we examined the effect of a Sema4D-
specific antibody on bone loss in an ovariectomized mouse model of 
postmenopausal osteoporosis. Ovariectomized 7-week-old mice were 
treated prophylactically with a weekly intravenous injection of the 
antibody starting 3 d after ovariectomy and continuing for 8 weeks, 
or osteopenic mice (6 weeks after ovariectomy) were therapeutically 
injected with the antibody once every 3 d for 3 weeks. Injection of the 
Sema4D-specific antibody was protective against bone loss after ova-
riectomy by promoting osteoblastic bone formation without affecting 
osteoclastic bone resorption in both prophylactic and therapeutic 
treatments (Fig. 6 and Supplementary Fig. 7). Sema4D-specific 
antibody effectively increased bone formation in human osteoblastic 
cells in coculture with human osteoclasts or osteoclast supernatant 
(Supplementary Fig. 8). Along with the effect of Plexin-B1–specific 
antibody (Fig. 2i and Supplementary Fig. 4e), these results suggest 
that the blocking Sema4D–Plexin-B1interaction is a new and poten-
tially effective strategy for increasing bone formation in humans.

DISCUSSION
The semaphorins have been implicated in repulsive axon guidance 
events in the developing nervous system. However, they are also 

widely expressed outside the nervous system and mediate diverse 
biological processes including organogenesis, vascularization, the 
immune response and tumor progression31–35. The semaphorins 
have also been suggested to be involved in the regulation of bone 
remodeling15,16,18,36, although this function has not been clearly  
demonstrated in vivo in loss-of-function genetic models.

Sema4D, also known as CD100, was first identified in immune cells 
and has been extensively investigated in the immune system. Sema4D, 
constitutively expressed in T cells, regulates the activation of B cells19 
and dendritic cells37 and inhibits monocyte migration38. In contrast to 
Sema3 family members, the function of Sema4D as an axon guidance 
cue has been less well understood, but a recent study provided genetic 
evidence that Sema4D positively regulates the migration of neurons 
during cortical development39.

Bone remodeling is a cycle consisting of three phases: the initia-
tion of bone resorption by osteoclasts; the transition into new bone 
formation by osteoblasts; and the synthesis of new bone and then 
termination6. In the initial phase, osteoblastic bone formation in 
the immediate vicinity of bone-resorbing osteoclasts or osteoblast 
recruitment to the bone resorption site needs to be suppressed until 
osteoclastic bone resorption is accomplished. The Sema4D expressed 
by osteoclasts may function as an inhibitor of bone formation in this 
phase by suppressing osteoblast differentiation and modulating 
osteoblast motility. Classically, coupling factors released during bone 
resorption activate bone formation, but the concept can be extended 
to include osteoclast-osteoblast communicating factors. These factors 
do not necessarily link bone resorption to formation but may dissoci-
ate formation from resorption, thus being crucial for specific phases 
in bone remodeling. In this study, we showed that osteoclasts con-
trol osteoblast localization through Sema4D regulation of osteoblast  
differentiation and motility, suggesting that Sema4D acts as a guid-
ance molecule for bone cell positioning, which is analogous to the 
function of semaphorins in axon guidance.

We showed that the binding of Sema4D to Plexin-B1 results in the 
activation and autophosphorylation of ErbB2, which phosphorylates 
Plexin-B1. RhoA is subsequently activated by RhoGEFs including 
PDZ-RhoGEF and LARG, which associate with Plexin-B1. RhoA-
ROCK inhibits the phosphorylation of IRS-1, which is the crucial 
step in IGF-1 signaling favoring osteoblast differentiation. Thus, 
we concluded that Sema4D inhibits osteoblast differentiation by  
RhoA activation.

Although the detailed mechanisms by which Sema4D regulates 
osteoblast motility remain obscure, we found that cadherin-11 expres-
sion was decreased by Sema4D stimulation. Cadherin-11 is a specific  
component of the osteoblast cell-cell adhesion machinery40, and 
downregulation of cadherin-11 may be related to the higher osteoblast 
motility observed after Sema4D treatment. Consistent with this, mice 
lacking cadherin-11 show osteopenia, indicating that cadherin-11 is a 
positive regulator of bone formation40. Further study will be needed to 
understand the detailed function of cadherin-11 in Sema4D-mediated 
regulation of bone formation.

We confirmed that the Sema4D-specific antibody promotes bone 
formation in the coculture system of human osteoclasts and osteoblasts, 
suggesting that Sema4D is an auspicious therapeutic target in the treat-
ment of human osteopenic disease (Supplementary Fig. 8). In the bone 
loss associated with inflammatory and neoplastic diseases, a decrease 
in bone formation is observed in addition to the enhanced osteoclastic 
bone resorption41,42. As Sema4D is expressed in T cells and certain 
types of cancer cells, Sema4D produced by these cell types may con-
tribute to this reduction in bone formation. Intermittent parathyroid  
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hormone treatment is the only currently available strategy that has 
been demonstrated to increase bone formation. A Sost-specific anti-
body under development has attracted attention as a potential new 
bone-increasing agent among candidate strategies43, and now the 
suppression of the Sema4D–Plexin-B1–RhoA signaling axis holds 
promise as a strategy for the design of new therapeutic approaches to 
bone and joint diseases, including osteoporosis, rheumatoid arthritis 
and bone tumors.

Methods
Methods and any associated references are available in the online 
version of the paper at http://www.nature.com/naturemedicine/.

Note: Supplementary information is available on the Nature Medicine website.
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ONLINE METHODS
Mice and analysis of the bone phenotype. Generation of Sema4d−/−, Plxnb1−/−, 
CAT-RhoA DN and α(1)I-Cre mice was as previously described28,29,44,45. 
Sema4d−/− mice (RBRC no. 00753) were provided by the RIKEN BioResource 
Center. All mice were backcrossed with C57BL/6 mice more than eight times, 
born in the expected Mendelian ratio without apparent developmental 
abnormalities, and maintained under specific-pathogen–free conditions. All 
mouse experiments were approved by the Institutional Animal Care and Use 
Committee of Tokyo Medical and Dental University and conformed to relevant 
guidelines and laws. The femurs and tibiae of 12-week-old female mice (n ≥8) 
were subjected to three-dimensional microcomputed tomography and histo-
morphometric analysis, respectively, as previously described46. Bone mechani-
cal strength testing was performed using a three-point bending method, as 
previously described47.

Cell culture. We described the in vitro osteoclast differentiation method previ-
ously48. The in vitro osteoblast differentiation method was also as previously 
described49. Briefly, cells derived from calvaria were cultured in osteogenic 
medium (50 µM ascorbic acid, 10 nM dexamethasone and 10 mM β-glycero-
phosphate) and subjected to an analysis of the activity and mRNA expression 
of ALP (encoded by Alpl) (after 7 d), bone nodule formation and the expression 
of osteoblastic marker genes such as Bglap and Col1a1 (after 21 d). Bone nodule 
formation was quantified as described50. Recombinant Sema4D (Fc-sema4D) 
(20 µg, unless otherwise indicated), neutralizing antibodies against Sema4D 
(BMA-12, MBL)19,51 or Plexin-B1 (N-18, Santa Cruz)52, or the ROCK inhibitors 
Y-27632 (10 µM, Calbiochem) and RKI (5 µM, Calbiochem), were added every 
3 d. In Figure 1i, calvarial cells were cultured in osteoclast culture supernatant, 
which was collected from the culture of the wild-type and Sema4d−/− osteoclast 
precursor cells 2 d after RANKL stimulation. For the coculture of osteoblasts 
with osteoclasts, wild-type and Sema4d−/− osteoclasts were isolated by trypsini-
zation 2 d after RANKL stimulation. Isolated osteoclasts (1 × 105 cells per well 
in a 24-well plate) were added every 3 d.

Immunoblot analysis. For the pull-down assay using Fc-sema4D, cell lysates 
were incubated with Fc-sema4D (500 ng) and analyzed by immunoblotting 
with antibodies to Plexin-B1, PDZ-RhoGEF and LARG. For analysis of the 
effect of Sema4D on intracellular signaling, calvarial cells were stimulated with  
Fc-sema4D after 3 d of culture in the osteogenic medium. Cells were stimulated 
with IGF-1 (10 nM, Sigma-Aldrich) after serum starvation for 8 h after 3 d of 
culture. Cells were pretreated with 30 µM of an ErbB2 inhibitor II (Santa Cruz), 
10 µM Y27632 or 5 µM RKI for 1 h before stimulation with Fc-sema4D or  
IGF-1. Phosphorylation of Plexin-B1, Met, ErbB2 and IRS-1 was detected with a 
phosphotyrosine-specific antibody after immunoprecipitation with the specific 
antibodies. The antibodies used are listed in Supplementary Table 2.

Detection of RhoA activation. The pull-down assay to detect GTPase acti
vity was performed as described53. Briefly, calvarial cells were cultured in the 
osteogenic medium for 3 d followed by incubation in serum-free α-MEM for 
8 h, and then stimulated with Fc-sema4D. Cells were collected at the indicated 
time points and cell lysates were subjected to an incubation with 2 µg of GST-
RBD (for RhoA) and GST-PAK1 (for Rac1) coupled to glutathione-Sepharose,  
followed by immunoblotting with RhoA-specific and Rac1-specific antibodies, 
respectively. For the ELISA of RhoA activity (Fig. 3b,e), GTP-bound RhoA was 
detected by G-LISA (Cytoskeleton) according to the manufacturer’s protocol. 
To examine the effect of ErbB2, cells were pretreated with ErbB2 inhibitor II for 
1 h before Fc-sema4D stimulation.

Ovariectomy-induced bone loss. This model of osteoporosis induced by ovari
ectomy has been described54. Briefly, 7-week-old female mice were ovariect-
omized or sham operated. More than eight mice were examined in each group. 
For the analysis of the prophylactic effect of the Sema4D-specific antibody, ova-
riectomized mice were intravenously injected with 20 µg of Sema4D-specific 
antibody (MBL) or saline via the tail vein weekly from day 3 to week 8 after 
surgery. To analyze the therapeutic effect of the Sema4D-specific antibody, after  
6 weeks of surgery, we started an injection of the same amount of Sema4D- 
specific antibody and continued the injection every 3 d for 3 weeks. All of 
the mice were killed and subjected to microcomputed tomography and histo
morphometric analyses 8 weeks (prophylactic model) or 9 weeks (therapeutic 
model) after surgery.

Motility assay. Cell migration was assessed using a modified Boyden chamber 
assay, as described55. Osteoblasts (3 × 104 cells) were added to the upper chamber.  
IGF-1 (100 ng ml−1) or Fc-sema4D was added to the lower chamber. After 4 h, 
the cells that migrated to the lower surface of the membrane were counted. To 
analyze the effect of the ROCK inhibitor on Sema4D-induced cell motility, cells 
were pretreated with 5 µM RKI for 1 h and added to the upper chamber.

Statistical analysis. All data are expressed as the mean ± s.e.m. (n = 5). 
Statistical analyses were performed using the Student’s t test analysis of variance  
followed by the Bonferroni test when applicable. Results are representative  
examples of more than four independent experiments.

Additional methods. Detailed methodology is described in the  
Supplementary Methods.
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